9,730 research outputs found

    Search for α\alpha-cluster states in even-even Cr isotopes

    Full text link
    The α+core\alpha + \mathrm{core} structure is investigated in even-even Cr isotopes from the viewpoint of the local potential model. The comparison of Qα/AQ_{\alpha}/A values for even-even Cr isotopes and even-even A=46,54,56,58A = 46,54,56,58 isobars indicates that 46^{46}Cr and 54^{54}Cr are the most favorable even-even Cr isotopes for α\alpha-clustering. The ground state bands of the two Cr isotopes are calculated through a local α+core\alpha + \mathrm{core} potential with two variable parameters. The calculated spectra give a very good description of most experimental 46^{46}Cr and 54^{54}Cr levels. The reduced α\alpha -widths, rms intercluster separations and B(E2)B(E2) transition rates are determined for the ground state bands. The calculations reproduce the order of magnitude of the available experimental B(E2)B(E2) values without using effective charges and indicate that the first members of the ground state bands present a stronger α\alpha-cluster character. The volume integral per nucleon pair and rms radius obtained for the α+50\alpha+^{50}Ti potential are consistent with those reported previously in the analysis of α\alpha elastic scattering on 50^{50}Ti

    Roles of Critical Valence Fluctuations in Ce- and Yb-Based Heavy Fermion Metals

    Full text link
    The roles of critical valence fluctuations of Ce and Yb are discussed as a key origin of several anomalies observed in Ce- and Yb-based heavy fermion systems. Recent development of the theory has revealed that a magnetic field is an efficient control parameter to induce the critical end point of the first-order valence transition. Metamagnetism and non-Fermi liquid behavior caused by this mechanism are discussed by comparing favorably with CeIrIn5, YbAgCu4, and YbIr2Zn20. The interplay of the magnetic order and valence fluctuations offers a key concept for understanding Ce- and Yb-based systems. It is shown that suppression of the magnetic order by enhanced valence fluctuations gives rise to the coincidence of the magnetic-transition point and valence-crossover point at absolute zero as a function of pressure or magnetic field. The interplay is shown to resolve the outstanding puzzle in CeRhIn5 in a unified way. The broader applicability of this newly clarified mechanism is discussed by surveying promising materials such as YbAuCu4, beta-YbAlB4, and YbRh2Si2.Comment: 17 pages, 8 figures, invited paper in special issue on strongly correlated electron system

    Moduli space volume of vortex and localization

    Full text link
    Volume of moduli space of BPS vortices on a compact genus h Riemann surface Sigma_h is evaluated by means of topological field theory and localization technique. Vortex in Abelian gauge theory with a single charged scalar field (ANO vortex) is studied first and is found that the volume of the moduli space agrees with the previous results obtained more directly by integrating over the moduli space metric. Next we extend the evaluation to non-Abelian gauge groups and multi-flavors of scalar fields in the fundamental representation. We find that the result of localization can be consistently understood in terms of moduli matrix formalism wherever possible. More details are found in our paper in Prog.Theor.Phys.126 (2011) 637.Comment: 10 pages, talk at the international conference "quantum theory and symmetries 7" in prague, august 7-13, 201

    Quantum Valence Criticality as Origin of Unconventional Critical Phenomena

    Full text link
    It is shown that unconventional critical phenomena commonly observed in paramagnetic metals YbRh2Si2, YbRh2(Si0.95Ge0.05)2, and beta-YbAlB4 is naturally explained by the quantum criticality of Yb-valence fluctuations. We construct the mode coupling theory taking account of local correlation effects of f electrons and find that unconventional criticality is caused by the locality of the valence fluctuation mode. We show that measured low-temperature anomalies such as divergence of uniform spin susceptibility \chi T^{-\zeta) with ζ 0.6\zeta~0.6 giving rise to a huge enhancement of the Wilson ratio and the emergence of T-linear resistivity are explained in a unified way.Comment: 5 pages, 3 figures, to be published in Physical Review Letter

    Antiferromagnetic order in CeCoIn5 oriented by spin-orbital coupling

    Get PDF
    An incommensurate spin density wave (QQ phase) confined inside the superconducting state at high basal plane magnetic field is an unique property of the heavy fermion metal CeCoIn5_5. The neutron scattering experiments and the theoretical studies point out that this state come out from the soft mode condensation of magnetic resonance excitations. We show that the fixation of direction of antiferromagnetic modulations by a magnetic field reported by Gerber et al., Nat. Phys. {\bf 10}, 126 (2014) is explained by spin-orbit coupling. This result, obtained on the basis of quite general phenomenological arguments, is supported by the microscopic derivation of the χzz\chi_{zz} susceptibility dependence on the mutual orientation of the basal plane magnetic field and the direction of modulation of spin polarization in a multi-band metal.Comment: 7 pages plus 2 pages with 2 figure

    Polar type density of states in non-unitary odd-parity superconducting states of gap with point nodes

    Full text link
    It is shown that the density of states (DOS) proportional to the excitation energy, the so-called polar like DOS, can arise in the odd-parity states with the superconducting gap vanishing at points even if the spin-orbit interaction for Cooper pairing is strong enough. Such gap stuructures are realized in the non-unitary states, F_{1u}(1,i,0), F_{1u}(1,varepsilon,varepsilon^{2}), and F_{2u}(1,i,0), classified by Volovik and Gorkov, Sov. Phys.-JETP Vol.61 (1985) 843. This is due to the fact that the gap vanishes in quadratic manner around the point on the Fermi surface. It is also shown that the region of quadratic energy dependence of DOS, in the state F_{2u}(1,varepsilon,varepsilon^{2}), is restricted in very small energy region making it difficult to distinguish from the polar-like DOS.Comment: 5 pages, 3 figures, submitted to J. Phys.: Condens. Matter Lette
    corecore